
1

Duy Hieu Nguyen

Anh Khoa Nguyen

Huu Giap Nguyen

Thanh Nguyen

Nguyen Anh Quynh

TSSHOCK
Breaking MPC Wallets and
Digital Custodians for $BILLION$ Profit
verichains.io/tsshock

info@verichains.io

mailto:info@verichains.io

Private-key extraction attacks in popular GG18/GG20
based Threshold Signature Scheme (TSS)

implementations, a Multi-Party Computation (MPC)
protocol.

2

What is this talk about?

3

Multi Party Computation

• Joint Computation with Private inputs

• Private inputs are never revealed/computed

• Accurately calculate the result

4

Threshold Signature Scheme

• Joint Computation of Digital Signatures
with Private shares

• Private key is split into multiple key shares

• Private key is never reconstructed by any party

• Threshold t/n party to produce the signature

5

GG18/GG20 protocols

• Well known in the industry

• Multiple revisions

• Open-sourced implementations

• Being widely used in production

• TSS for ECDSA

6

GG18/GG20 protocols

Threshold ECDSA

MtA

Range Proof

dlnproof

protect

sub protocol

protect

7

NOT REQUIRED TO
UNDERSTAND

Alice Bob

NOT REQUIRED TO
UNDERSTAND

Signing ceremony

MtA
sub-protocols

8

MtA sub-protocol

𝑎
Alice Bob

𝑏

𝑎 ⋅ 𝑏 = 𝛼 + 𝛽
𝑚𝑜𝑑 𝑞

𝛼 𝛽

*lots of complex math

This protocol requires a range proof!

All inputs and outputs are sensitive data

9

𝑎
Alice Bob

𝑏

𝑧! = ℎ"#$ ⋅ ℎ%#
&! 𝑚𝑜𝑑 .𝑁#

𝑧# = ℎ"!' ⋅ ℎ%!
&" 𝑚𝑜𝑑 .𝑁!

Range proof used in MtA sub-protocol

.𝑁(, ℎ"(, ℎ%(

.𝑁), ℎ"), ℎ%)

During Key generation phase

During Signing phase

10

Alice

Alice receives 𝑧 = ℎ"* ⋅ ℎ%
& 𝑚𝑜𝑑 1𝑁

𝑥 is private value of the other party

𝑥 should not be revealed

Range proof used in MtA sub-protocol

𝜌 is random nonce of the other party
1𝑁, ℎ", ℎ%

11

Alice

Alice receives 𝑧 = ℎ"* ⋅ ℎ%
& 𝑚𝑜𝑑 1𝑁

1𝑁, ℎ", ℎ%

Range proof used in MtA sub-protocol

ℎ! is in the multiplicative subgroup generated by ℎ"

Requires a proof of knowledge of log#! ℎ!𝑚𝑜𝑑 *𝑁

𝑥 is not revealed when 𝜌 is big enough

ℎ! = ℎ"$ => 𝑧 = ℎ"
$%&' 𝑚𝑜𝑑 *𝑁

Using dlnproof of log#! ℎ!𝑚𝑜𝑑 *𝑁

12

dlnproof

Prover Verifier

𝛼 = ℎ%
& 𝑚𝑜𝑑 1𝑁

Accepts if ℎ%+ = 𝛼 ⋅ ℎ", 𝑚𝑜𝑑 1𝑁

1𝑁,𝜙 1𝑁

𝑐 ←
(
{0,1}

𝜏 = 𝜌 + 𝑐 ⋅ log-# ℎ" 𝑚𝑜𝑑 𝜙(1𝑁)

Repeats at least 80 times

Apply Fiat-Shamir heuristics with c = 𝐻(1𝑁, ℎ", ℎ%, {𝛼.})

1𝑁, ℎ", ℎ%

ℎ!, ℎ", log#! ℎ!

13

GG18/GG20 protocols

Threshold ECDSA

MtA

Range Proof

dlnproof

iacr/2021/1621
Attack on absent range proofs

iacr/2020/1052
Missing dlnproof validation

protect

sub protocol

protect

TSSHOCK Attacks

14

TSSHOCK Attacks
Implementation weaknesses found in dlnproof allows forging proofs

All attacks can recover private key

Most implementations
- Single malicious party member
- Protocol seamlessly continues with no abort

on attack

𝛼-shuffle
c-split
c-guess

Many implementations,
including de-facto open-

source TSS frameworks in
Golang and Rust found to

be vulnerable.

Widely used in

MPC Wallet
Asset Custodian

Decentralized Bridge

Attacks

15

𝛼-shuffle

for i := range in values {
data = append(data, values[i])
data = append(data, delimiter)

}

Problem: Ambiguous encoding scheme

16

𝛼-shuffle

for i := range in values {
data = append(data, values[i])
data = append(data, delimiter)

}

Problem: Ambiguous encoding scheme

17

𝛼-shuffle

for i := range in values {
data = append(data, values[i])
data = append(data, delimiter)

}

Problem: Ambiguous encoding scheme

18

𝛼-shuffle

for i := range in values {
data = append(data, values[i])
data = append(data, delimiter)

}

Problem: Ambiguous encoding scheme

19

𝛼-shuffle

Prepare 𝛼 for 𝑐 = 1 and 𝑐 = 0

Take a guess on how many bits of 0 and 1

20

𝛼-shuffle

Prover Verifier

21

c-split

Problem: Use a larger challenge space with
no dlnproof iteration

22

c-split

Prover Verifier

𝛼 = ℎ%
& 𝑚𝑜𝑑 1𝑁

Accepts if ℎ%+ = 𝛼 ⋅ ℎ", 𝑚𝑜𝑑 1𝑁

1𝑁,𝜙 1𝑁

𝜏 = 𝜌 + 𝑐 ⋅ log-# ℎ" 𝑚𝑜𝑑 𝜙(1𝑁)

No iteration

Apply Fiat-Shamir heuristics with c = 𝐻(1𝑁, ℎ", ℎ%, {𝛼.})

1𝑁, ℎ", ℎ%

ℎ!, ℎ", log#! ℎ! 𝒄 ∈ 𝒁𝟐𝟐𝟓𝟔

23

c-split
𝜏 = 𝜌 + 𝑐 ⋅ log-# ℎ" 𝑚𝑜𝑑 𝜙(1𝑁)

If log#! ℎ! =
!
" and 𝑐 is an even number, 𝜏 exists, proof exists

If log#! ℎ! =
!
$ and 𝑐 divides 𝑒, 𝜏 exists, proof exists

Probability for a random 𝑐 divides 𝑒 is !$ à Brute force 𝑐

It should be noted that !
$

is non-existent in group 𝜙(*𝑁) if gcd 𝑒, 𝜙 *𝑁 ≠ 1

But if 𝑐 divides 𝑒 , the proof can be calculated

24

c-split

Using brute force so 𝑒 should be small 30-50 bits (computing power)

Private inputs extracted are in 𝑚𝑜𝑑 𝑒

Acquire more signature(s) and use lattice attack* to recover full value

𝑒 is small so the value cannot be fully extracted from 1 signature

*Similar to nonce leakage attack on ECDSA

25

c-guess

Problem: Reduction of dlnproof iterations

26

c-guess

Prover Verifier

𝛼 = ℎ%
& 𝑚𝑜𝑑 1𝑁

Accepts if ℎ%+ = 𝛼 ⋅ ℎ", 𝑚𝑜𝑑 1𝑁

1𝑁,𝜙 1𝑁

𝑐 ←
(
{0,1}

𝜏 = 𝜌 + 𝑐 ⋅ log-# ℎ" 𝑚𝑜𝑑 𝜙(1𝑁)

Repeat fewer times

Apply Fiat-Shamir heuristics with c = 𝐻(1𝑁, ℎ", ℎ%, {𝛼.})

1𝑁, ℎ", ℎ%

ℎ!, ℎ", log#! ℎ!

27

c-guess

Predictable challenge is insecure

Low rounds number can be brute force for all challenge bits

Probability for a successful guess is !
"%&'()&%*+,

28

Recap attacks

Bug Attack Why?
Ambiguous encoding
scheme

𝛼-shuffle Same encoding for different
integer lists

Reduction of dlnproof
iterations

c-guess Easily guess challenge bits for
a small number of iterations

Use a larger challenge
space with no dlnproof
iterations

c-split Optimize the scheme without
proving its soundness error is
negligible

29

Affected Vendors/Libraries

30

DEMO

31

32

THORChain mainnet
halted globally after our
report.

Our PoC exploit could
steal all assets from
THORChain's vaults
(US$180M TVL) via a
single malicious node.

33

• Implement new and complex cryptography protocols can be
extremely challenging and dangerous.

• Optimizations for cryptographic protocols can be also
extremely challenging and dangerous.

• New cryptographic protocols must undergo a rigorous
security evaluation before widely used in production.

• MPC/TSS is pretty new and has not been standardized yet.
• prone to new vulnerabilities.
• gradually more secure by being battle-tested and challenged by new

attacks

34

Conclusions

35

Duy Hieu Nguyen

Anh Khoa Nguyen

Huu Giap Nguyen

Thanh Nguyen

Nguyen Anh Quynh

Q&A

TSSHOCK
Breaking MPC Wallets and
Digital Custodians for $BILLION$ Profit
verichains.io/tsshock

info@verichains.io

mailto:info@verichains.io

