black hat ‘ ﬂi \ verichiz‘, 3

LS A ElEs=

TSSHOCK hgh

Breaking MPC Wallets and =
Digital Custodians for $BILLIONS Profity | ¢ .
verichains.io/tsshock NI 16

I.)
A 407
AR LD
= |
el s = J’"

C——

9
e S
TR
t. -‘;‘ ’- "N f
B l'\'o R ‘I‘_ g : » D
.‘C\‘
o Aa TN

—

.-

-
AT\
/oot
25
. >

£ v
RS %

- - -
- B
0 ey,
'l' o >y -
-

’s

’Is
__‘ .‘ :
4%

85
s
E‘
7

:1\\\
3
Z\
\\(\ ;

08
N

e &
o

e
-~
’.

4 "‘. d
e

e,
5

}

—

Duy Hieu Nguyen

info@verichains.io

Thanh Nguyen

Nguyen Anh Quynh

mailto:info@verichains.io

What is this talk about?

Private-key extraction attacks in popular GG18/GG20
based Threshold Signature Scheme (TSS)
implementations, a Multi-Party Computation (MPC)
protocol.

a verichains

Multi Party Computation

« Joint Computation with Private inputs
* Private inputs are never revealed/computed

* Accurately calculate the result

| ﬂi Iverichains

Threshold Signature Scheme

« Joint Computation of Digital Signatures .’i

with Private shares

* Private key is split into multiple key shares \' ‘

* Private key is never reconstructed by any party /,

« Threshold t/n party to produce the signature .a'

| ﬂi Iverichains

GG18/GG20 protocols

« TSS for ECDSA

« Well known in the industry

* Multiple revisions

* Open-sourced implementations

» Being widely used in production

| ﬂi Iverichains

GG18/GG20 protocols

Threshold ECDSA

sub protocol f
MtA

protect '

Range Proof

protect f

dinproof

| ﬁi Iverichains

Signing ceremony

-1

Alice NOT REQUIRED TO

UNDERSTAND

Bob

MtA

sub-protocols

NOT REQUIRED TO
UNDERSTAND

| ﬁi Iverichains

MtA sub-protocol

-1

Alice Bob
a *lots of complex math b
a-b=a+pf
mod q
a b

All inputs and outputs are sensitive data

This protocol requires a range proof!

| ﬁi Iverichains

Range proof used in MtA sub-protocol
i During Key generation phase ﬁ
h NA» hlAi hZA .

Alice g Bob

a) 1’\71;' hlB) hZB b

During Signing phase

z4 = h8g - hb4 mod Np ‘

Zp = h?, - h% mod N,

| ﬁi Iverichains

Range proof used in MtA sub-protocol

| ﬁi Iverichains

-1

Alice

N,hy, h,

Alice receives z = h{ - h, mod N

x is private value of the other party
p is random nonce of the other party

x should not be revealed

Range proof used in MtA sub-protocol

| ﬁi Iverichains

Alice receives z = h{ - h, mod N
h, is in the multiplicative subgroup generated by h,

hy = hé=>z=hS""mod N

x Is not revealed when p is big enough
Requires a proof of knowledge of log,, h; mod N

Using dinproof of logy,_ h; mod N

dinproof

N'¢(N) w a=h§m0d1\7

hl; h2, loghz hl Prover

N,hy, h,

)

Verifier

R
c <{0,1}

T=p+c-logy, hy mod $p(N)

Accepts if kY = a - h$ mod N
Repeats at least 80 times

Apply Fiat-Shamir heuristics with c = H(N, hq, hy, {a;})

a verichains

dinproof TSSHOCK Attacks

TSSHOCK Attacks

Implementation weaknesses found in dinproof allows forging proofs

a-shuffle
Attacks c-split

All attacks can recover private key

Most implementations
- Single malicious party member

c-guess - Protocol seamlessly continues with no abort
on attack
Many implementations, Widely used in
including de-facto open-
source TSS frameworks in MPC Wallet
Golang and Rust found to Asset Custodian
be vulnerable. Decentralized Bridge

| ﬁi Iverichains

a-shuffle

Problem: Ambiguous encoding scheme

for i := range in values {
data = append(data, values[i])
data = append(data, delimiter)
}

| ﬁi Iverichains

a-shuffle

Problem: Ambiguous encoding scheme

for 1 := range in values {
data = append(data, values[i])
data = append(data, delimiter)
}

| ﬁi Iverichains

a-shuffle

Problem: Ambiguous encoding scheme

for 1 := range in values {
data = append(data, values[i])
data = append(data, delimiter)
}

| ﬁi Iverichains

a-shuffle

Problem: Ambiguous encoding scheme

for 1 := range in values {
data = append(data, values[i])
data = append(data, delimiter)
}

| ﬁi Iverichains

a-shuffle

Take a guess on how many bits of 0 and 1

Prepare a forc =1andc =10

1
(8
e
-
Delim
'
RS RS
0 0
o o

| ﬂi Iverichains

Algorithm 1 o-shuffle dlnproof forging

[nput: g, N.
Output: h, dlnproof for log, h mod N.
I. Let T= rand(Zgu(,))- Let o = g"* mod N. Set all T; = 1.
2. Leta = bytes(a). Let B = int(a|D|a).
3. Seth — % mod N (so that B = *',—: mod N).
4. Forlin {0,1,2,...,A}:

o (1<i<l)
B (I+1<i<A)
o to [first o; and B to the remaining).

(a) Temporarily set o; — { (assign

(b) Letcy,ca,....cp = H(}g,h,N,(X.] L0, ...,(XA).
(¢) If Y. ¢; = A — [(there are [challenge bits equal to

p(ci=1
5. Go back to step 1.

04 i = 0
0), set o; — { (<) and return.

a-shuffle

| ﬁi Iverichains

-
o
&

o| » 2=
y,

3)

Prover D D

o - o=

1,0,0,1

\
of - o=
J
.

of + o=

10,0,1

Verifier

20

c-split

Problem: Use a larger challenge space with
no dinproof iteration

| ﬂi Iverichains

21

c-split

[[
Vo M a = h? mod N A
hl; h2, loghz hl Prover ez Verifier
2256

T=p+c-logy, hy mod $p(N)

Accepts if kY = a - h$ mod N
No iteration

Apply Fiat-Shamir heuristics with c = H(N, hq, hy, {a;})

| I Iverichains T
a

c-split

T=p+c-log, hy mod $p(N)
If logp, hy = % and c is an even number, T exists, proof exists

If logp, hy = i and c divides e, t exists, proof exists

It should be noted thati is non-existent in group ¢(N) if gcd (e, qb(N)) * 1
But if ¢ divides e , the proof can be calculated

Probability for a random c divides e is i —> Brute force c

a verichains
I

c-split

Using brute force so e should be small 30-50 bits (computing power)
Private inputs extracted are in mod e
e is small so the value cannot be fully extracted from 1 signature

Acquire more signature(s) and use lattice attack™ to recover full value

*Similar to nonce leakage attack on ECDSA

a verichains

c-guess

Problem: Reduction of dlnproof iterations

| ﬂi Iverichains

25

c-guess

N'¢(N) w a=h§m0d1\7

hl; h2, loghz hl Prover

N,hy, h,

)

Verifier

R
c <{0,1}

T=p+c-logy, hy mod $p(N)

Accepts if kY = a - h$ mod N
Repeat fewer times

Apply Fiat-Shamir heuristics with c = H(N, hq, hy, {a;})

a verichains

c-guess

Predictable challenge is insecure

Low rounds number can be brute force for all challenge bits

Probability for a successful guess is >

iterations

| ﬁi Iverichains

27

Recap attacks

Bug __________ Attack __Why?

Ambiguous encoding
scheme

Reduction of dinproof
iterations

Use a larger challenge
space with no dinproof
iterations

| ﬁi Iverichains

a-shuffle

c-guess

c-split

Same encoding for different
integer lists

Easily guess challenge bits for
a small number of iterations

Optimize the scheme without
proving its soundness error is
negligible

28

Affected Vendors/Libraries

Required number of

Implementations Attack Technique PoC
Malicious parties (Re)sharing ceremonies Signing ceremonies

Axelar (tofn) c-split YES 1 1 2
Binance/BNBChain (tss-lib) a-shuffle YES 1 1 1
ING Bank (threshold-signatures) c-split YES 1 1 2
Keep Network/Threshold Network o-shuffle YES 1 1 1
Multichain (fastMPC) wshuffie YES : : :
c-guess YES 1 1 1

Swingby (tss-lib) a-shuffle YES 1 1 1
Taurus (multi-party-sig) a-shuffle YES 1 1.5526 1
Thorchain (tss-lib) o-shuffle YES 1 1 1
ZenGo X (multi-party-ecdsa) c-split YES 2 1 1

| I Iverichains T
a

verichains

DEMO

@ TextEdit

File Edit Format

View

.

EXPLORER

v UNTITLED (WORKSPACE)

v thorchain

> .vscode

v thornode

448

>
>
>
>
>
>
>
>
>
>
>
>
>
>
3
>
>
>

Arunk
app
bifrost
build
chain

c

cmd
common
config
constants
docs
log
openapi
pkg
proto
scripts
semgrep
test

> OUTLINE
> TIMELINE

> GO

X P release-1.100.0*+ & ¥ Go1.19.28

Window

Help

WE md

& Preview README.md X D

mocknet => all mocknet dependencies

Keys

We leverage the following keys for testing and local mocknet setup,
created with a simplified mnemonic for ease of reference. We refer to
these keys by the name of the animal used:

cat cat cat cat cat cat cat cat cat cat cat cat cat
dog dog dog dog dog dog dog dog dog dog dog dog dog
fox fox fox fox fox fox fox fox fox fox fox fox fox
pig pig pig pig pig pig pig pig pig pig pig pig pig

cat =>
dog =>
fox =>
pig =>

Examples
Example commands are provided below for those less familiar with

Docker Compose features:

docker compose ——profile mocknet up -d

docker compose —-profile mocknet —-profile midgard up -d

®15A 2 SFTP -- NORMAL -- @ GolLive &7

O ® E ¥ X

e 2 4) 3 W) T Q 8

+ Untitled

|~ B

| 4 | 4
2 € 10 12 4 16 18
We setup thorchain and bifrost bridge to run the exploitation as follow:
+ 5 thorchain nodes: bootnode, cat, dog, fox, pig. (hootnode key is autogenerated)
+ 5 bifrost nodes (tss bridge protocol): bootnode, cat, dog, fox, pig. cat is malicious node
+ 1 Ethereum block chain

- router address: 0xE65e9d372F8cAcc7b6dfcd4af6507851Ed31bb44

Sat 25 Mar 22:32

= (&7 COINTELEGRAPH

$ v BTC $29,614 ETH $1,861 BNB $243 XRP $0.64 ADA $0.300 USDC $1.00 USDT !

HELEN PARTZ MAR 28, 2023

_ . THORChain mainnet halted amid new vulnerability reports
THORChain mainnet

halted g|0ba||y after our THORChain has once again halted its network, taking action as a precautionary

report. measure while verifying reports on a potential network vulnerability.

Cross-chain liquidity protocol THORChain has paused its network due to new claims
Our PoC exploit could of a potential network vulnerability.
steal all assets from

H |
THORChain's vaults reports of a potential vulnerability with a THORChain dependency that may affect the
(USSISOM TVL) Via d network. The decision was taken as a precautionary measure while the reports are
single malicious node. verified, THORChain said.

THORChain took to Twitter on March 28 to announce it has halted all trading amid

The announcement came soon after social media reports indicated THORChain's

liquidity platform Nine Realms and the dedicated security team THORSec received

“credible reports” of a potential vulnerability affecting THORChain. The THORChain
Ea verichains network has reportedly been subsequently halted globally.

(base) giaps-MacBook-Pro:exploit giap$ (base) giaps-MacBook-Pro:exploit giap$

(base) giaps-MacBook-Pro:exploit giap$ (base) giaps-MacBook-Pro:exploit giap$

Conclusions

* Implement new and complex cryptography protocols can be
extremely challenging and dangerous.

« Optimizations for cryptographic protocols can be also
extremely challenging and dangerous.

* New cryptographic protocols must undergo a rigorous
security evaluation before widely used in production.

« MPC/TSS is pretty new and has not been standardized vyet.

e prone to new vulnerabilities.
« gradually more secure by being battle-tested and challenged by new

attacks

a verichains
I

blg’ckha'lf ‘ ﬂi \ verichains

USA 202 — S

TSSHOCK '

"\'/
R SR e =

Breaking MPC Walllets and |

Digital Custodians for $BILLION$ Profi
verichains.io/tsshock

Duy Hieu Nguyen

QLY

info@verichains.io

Thanh Nguyen
Nguyen Anh Quynh

mailto:info@verichains.io

